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ABSTRACT

It has long been kno_l that an important mode of energy loss

for cosmic ray electrons is i:,¢o_seCompton scatcering with photons

of starlight. Previous calculations of (d_/dt._Avdue to this process

have involved non-systematic approximations invclving the form of the

Klein=Nishind formula and the angular distribution of the radiation

as seen in the electron's rest frame. The present paper considers

an electron of arbitrary energy in an isotropic ther_,_1radiation

field of temperature T. A formally correct expression for (dV/dt)Av

is obtained as an asymptotic expansion in the quantity 8kT/(meC2)2

considered as a small parameter The oft quoted result

(d_,/dt>Av_ p,2is seen to be the zeroth order term in this expansion.

It is also seen that the energy loss rate rcan6es sign at , energy

g._ & kT as would be expected from thermodynamics. A'derivat-.-_
2

of the zeroth order term is given from classical radiation theory

and from this it is seen t -.tthi_,term also describes the energy

loss rate due to synchrotro:,_radiation as well as from inverse

Compton scattering.

i •
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INTRODUCTION

The scattering of energetic electrons by low energy photons,

called "inverse" tompton scattering, has been o_ a_,rophysical

interest for many years. It was first investigate by Feenberg

and Primakoffz as a process by which cosmic ray electrons (a'_l otons)

would lose energy during their passage through the galaxy. Later

Donahue2 applied the general method of Feenberg and Primakoff to the

case of electrons trapped in orbits about the sun.

The result of these two papers that the mean _nergy loss of an

energetic electron of energy _ is proportional to both the photon

energy density s_udto C _ was applied by Hayakawa and Kobayashi 3

and by Hayakawa and O--.uda4 to the problem of the equilibrium of cos-

mie ray electrons in the galaxy. More recently, Felton and Morrison5

have considered this process as a possible source of galactic x-rayss-s

and gamma-rayss'z_ and Shklovsky z2 has proposed it as a source of x-rays

in solar flares.

In the calculations of Feenberg and Primakoff and Donahue

the relewnt cross section formula is the Klein-Nishina formula

q(¢', X') for the scattering of a photon of energy _' by a

stationary electron through an angle _'. In _ssence the scattering

probability is expressed in the electron's rest frame and theu trans-

formed to the laboratory frame to determine the mean energy transferred

I

I
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l

from the electron to the photon. In the previous calculations i

the full Klein-Nishina formula was n_ used but rather the asy_,@totic ::

forms for ¢_ _ m _2 (Thompson scattering) and for _' c2. In
e" _'"me :

/

Feenberg and Primakoff the two forms are used in the two regions e' < m c2e

and c' > m cm respectively as an approximation to the correct form_ula.e

Donahue, on the other hand, uses the two formula in the regions _' < m c2/4e

¢

and ¢' > 4 meC2 respectively and connects the two regions cf his results i

with an "eyeba]]" curve. Both authors assume that the electron is ?

energetic enough so that in its rest frame all of the incident radia-

tion has @' _ 0 where w - @' is the angle between the photon momentum

in the electron res_ frame and the original direction of the electron

momentum. This assumption obvio1_ly limits the validity of the re_:ults

t,_high energy elect _ons.

The primary problem with these approximations is that they are

non-systematic; they do not suggest how to apply a higher order

correction. In the present calculation the mean rate of energy loss

- (d_/dt_ of an electron in an isotropic radiation field in thermal

equilibrium is determined. The only approximation used for a wide

range of _ is a systematic one in that the result is obtained as a true

asymptotic expansion in powers of a small para_meter _ - _ kT/(meC2)2

where _ is the electron energy and T is the temperature characteristic

of the radiation field. When _ gets so large that _ _ 1 the expansion

is no longer useful and tho resul' must be obtained by methods which

i
i i i i J i
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are less systematic out which are, nevertheless, quite accurate. We

will also discover an interesting relationship between inverse

Compton scattering, as described by the zeroth order term of the ex-

pansion, and synchrotron radistion.
T

r

I

U . I I I II I i i i i i [ 1 1
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_I FORMULATION OF THE FRC_L_4

Consider an., '_ctron of energy "_ (_e 3hall express the electron _

energy _ = _ zlc_',the photon ener_ _ = m mc2,.and _T = @ mc2 in

terms of the dimersionless parameters ", _, and _i)z,_ Lng in a r_gion

I,y

of space in which [he photon density, n kL,,@), i.Sgi/cn as a ft_.cLion

of energy m and an_le @ where Tr- @ -].7the smgle between the photon a_.d

electron velocity .,ectors. Letting s,prime (') indicate qu_.tities

expressed in the electrons rest frame we _ write for th_ number of

Compton collisions per unit time

i

J- J o, o,1(_/dt>Av = (em'/_dt'_= _q'(O') _' (c/_)n' (_',

where q_(m') is the Klein-Nishina _otal cross section. Since

n' (m',@) d_ _ (@') din'is a number density it transforms under the

Lorentz transformation like an energy m' so that n' (m', @) d_ (@')dm'/m'

is s.ninvariant.

We may then set

;!i :

i i ii na
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_ m

•_' C_', o) _,' (e') _' = (_'/_) _ (_,e) _ (e) d_ Ca;

and obtain

If we denote the lab frame energy of the scattered photon by al
.I .transfer

the e_ergy/ in the scattering process is (_i - _) and the mean e_ergy

loss of the electron is given by

L

i-

(-d_/dt)Av = c _[ d_(@)_'da (m'/Y_)l_ (m, @) _'dO'(X')o' (c_',X')(_l -O) (4)

t
mm m _
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where c (a',X') is the differentialKlein-Nishina formula for

scattering a photon of energy gt tbmcugh an angle X'- We have the

usual angle-energy relationship for Compton scattering

eI' = _'/ [ 1 + _' (1 - cos X')] • (5)
1

Employir4 the well known Doppler shift fornmla,

e'y(l - _ cos el')
_z = al'7 (1 - 8 cos @i') = (6)

1 + _' (i - cos X')

(1- 8 cos el') a

_i-(_=(_' { ........... } • (7)1 + 6'(i - COSX') _'

1965010115-011
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Consulting figure i we obtain the followin6 formula from spherical

trigonometry

COS QI' = cos @' COS X' + sin @' sin x' cos ¢ . (8)

J

Since the cross section formula cannot depend on ¢ we ma_-chose X'

and _ as our coordinate angles for d_' (X', _) and immediately integrate

over _. This has the effect of multiplying equation 4 by 2_ and re-

placir_ cos @m' with cos @m' where

cos91'= cos@' cos_' . (9) J

The Klein-Nishina ._rosssection formula is



mm I I I , m ._. _ .
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_ ,)2a'2(1 cos x

r°2 (i + c°s2 x') {I + ) (io)
a'(a',x') - 2 [i + a'(l-cos X')I;" (i+ cosax')[l+:'(l-eosx')]'

(r0 = ea/mea)

Making the following substitutions

8 cos e' = 1 - (_/va') ; 1 - cos ×_ = f ;

an, (x',¢)= 2_o__

and inserting equation lO in equation 4 we obtain

<-d_/dt>Av = _o_ ! _(O) d=_ (_,0)(='/_=)
0

Ia (fa_2f+2) rl (=,f)2 (y-c/= '-a)fc'x j _ L + q .(zz)o (1+_'f)2 (f2-2f+2)C1+_'f)J (1+_'z)

It should be noted that the variables in this expression are not

independent since a, m', V, and e are related by the Doppler

shift formul_

' (1 + B cos e)

1965010115-013
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We now specialize to the case where n(_, e) zepresents an _i

isotropic radiation field i.e., n(m, 8) = n(m)/4_
<

dn(e) = 2,_(eos e) = d_'/(_,_)

and obtain {

oo

(-a,#dt>Av = __ ,_oac _ a_ n (_)/ (8_)
o !

,'Y°'(I+B ) _-(fs-_._....-2f2+2f) + _ (12)_'[_'2(x-_)-_'_] :.(-_+_,f)_ (i+_'_) _-
x j'__ ],,_(I-,)

The integration over f and m' may be done by a straightforward and

repeated application of a good set of integral tables. After some i

time we arrive at the result

-, N(_)

i " d_-- F(_,N)

(-dv/dt>A v = _ "to ac .I 0 Bve_ 2 ._

- a[f=(o,?)-f=C,_/q)7

!

.......... i
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_ i

where V = V(1 + B) = V + (Ma-l)_

_ndf,(z)= (z+ 6 + 31z)log(I+ 2z)

-(22zS/5 + 24z2 + 18z + 4) (I + 2z) TM

-2+ 2 Li_(-2z) (z4)

f2(z) = (z + 31/6 + 5/z + 3/2za) log (i + 2z)

- (22zS/5 + 28za 4-i03z/5 + 17 + 5/z) (I + 2z)TM

- 2 + m2 (-2z). (19)

qhe function Lia(z) is the Eulerian Dilogarithm Is defined by

.z log(l - z')

Lia(z ) = -_ dz' for complex z
0 Zv

zn
n--1
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III ETALUATION OF THE INTEGRAL

We will now con_ider that the photon de.,sityis described

reasouably well by the l__mxkradiation formula

n(_) = 3'_(4)8_ e_j - 1 ;

[.

where (a) = _ _ n (_) do,= "energy" density and C(P) is the Riemann
o

Zeta _unction defined by b

_(p) =1+1/2P+:]_/5p +...
i

" a_dC (4) = _I_ _-

Expression 13 m_y now be written

<,

_('v) = - _" -
®42(y2-1)'_ o exp (ZN@) - I o exp (zV/®) - i

I

J
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(l/N4) 1 zf2(z) zf2(z)dz
-- '_

_49_(_2-1)_ _ o exp (z/_@) -I o cxp (zq/8) -

where we have transformed v_rJables in such a way as to make the

arguments of fl and f2 the varY.able of integration.

Up to this point our calculations have been exact within the

framework of the physical situation that we have considered. We

now ask whether there is some systematic approximation scheme

that will allow us to evaluate the integrals in equation 17 in some

simple mauner.

To this end we notice that fl and fi2have a second order pole

and a branch point at z = - 1/2 (a remant of the pole in

q(m',x') at cos X' = 1 + 1/2'). &&is _leansthat the power expan-
CO

sions of fl and f2, fl _A Zn' f2 _B Zn= = are convergent
n _ n

n--1 n--1

only for Izl < 1/2 and our integrals a_e over the range 0 m z < _ .

However, we notice that the term Kexp (kz) - l]-i is a

function that peaks at 1/k and drops off as exp (-kz) for values

of z significantly greater than 1/k. Therefore if @T < 1/2

only the portion of fl and f2 for z < 1/2 will contribute signifi-

cantly to the integral. Since G = kT/meC2 _ lO-e for T = 6,000°k

we may consider ? ® as a small parameter of order _ (since V _ l,

8_ < _ ®). The expansion coefficients An and Bn for fl and f2

respectively are obtained, in a stralghtforw_rd manner from the

m

1965010115-017
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al¢

known expamsior_ of log (I + 2z), (i + 2z) -2, and Lie(-2z). These

coefficients for n up to ten are given in table I.

Tf we now insert the series form of fz and f2 into the inte-

grals in equation 17 and i_tore the fact that they are not con-

vergent for Izl > 1/2 we will obtain a formal series for N(_)

which we hope will not be in error by very much. Making use of
L

the formula

xndx n+l

,ex_(x/e)-i= n: _ (n+l)c (18) i_
0

we have

fz,z,(_ dz n+l _

[ = _A n_C (n+l)eexp (z/£) -i n
0

(19)
r

j, _+2Z f2(z)dZ =_B n (n+l)_ C (n+2)6L
0 exp(z/¢) -i n

We may see at once that these,series are not convergent since from

the known circle of convergence of the series for fz and f2

1965010115-018
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lim A lim B
we have n n

n._ _-i n-_ Bn_ 1

lim

Kherefore since z oo _(z) = 1 we have

A n t _. .en+l

iirl . n (n+l) n> = 2n@ •

So for any finite ¢ there is a value of n N 1/2e beyond which

the terms of the series grow without limit. It is fairly easy to

see that this is the same series that would be generated by

repeated partial integrations of the integrals in 19 since

Ann.r = dnfJdz n. Furthermore, it is demonstrated in the ap-

pendix that this is in fact a correct asymptotic expansion of the

integrals in the sense that

N
n

n--1

_d _(,) --o (cN+I).

Noting from hable I that

,_ Ao =A_ =As =Bo _.B_ -0

t , , ..........

t t t i it i i j
i i t
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e

we may, after some rearrangementof terms, write fur N(y) _

N(y) = (19/_4) __.[Y2Am+3Cm+3(Y) _
m=o _

_2

"Bm+2"m+2 (_')3 (m+3). C (m+4) (,y@)m },

?

where ,

n _

n i-i _ - 1

[=odd

We see that for ._®g 1 (in our case _ < lOs) this series gives

an excellentapproximationprovidedy_a don't sum beyond n _ 1/2y@.
f

The zeroth order term in this series is

('_2#?# (v)-B2 C2(._))3.'_ (4)(__.;/#)= (A (_W2-Z)-2B2)3

since 9-h2= 3As.

I
!
I

1965010115-020



- 16 -

Inserting this approximation to N(_) in expression 16 we have

to zeroth or&er

-<d_/dt_A v = 3._ _ro2c p(p/meC)2 (21)

where p is the photon energy density in conventional units. We

see that for electrons of sufficiently low energy such thst pc _

the energy loss rate is proportional to p2 rather thanC 2.

We note further that expression 20 is negative for _ sufficiently

close to l° This means that a very low energy electron car, on the

average, gain energy from the radiation field. Setting expression 20

to zero we have to first order

A34__ (4)(_2-i)= - [4A4-3_3+ (_2-1)(8A_- B3/_2)]

x 4' _ (_)(_s) (22)

Since equation 22 states that _2-1 = O(e) we may neglect the term in

72-1 on the right hand side and obtain

(3B3-4A4)_(_)

= _e (_(_)/¢(_))

= o._8 (3_8) (23)
%

'I
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-- We see that this is a few percent below the equipartition energy
\

for a relati-._isticgas I_ _2~i = 3_. A similar calculation for the

energy loss of a test particle in a Maxwellian, hard-sphere gas

gives <d_/dt} = o for = 0.981 (SkT/2) which is in qualitative

agreement w_th equal!on 23.

For _-m the asymptotiz series 20 is no longer useful. In -_

this region we _st resort to less systematic but neverthe[ess

quite ac_arate methods of approximation. First of all note that if

y@ _>I then v./8_>1. This means that the second and fourth integrals

in expression 17 maY be completely ignored. We may, in fact, rewrite

expression 17, noting that q _ 27, as

f1(z)dE z f2!z)dz 7
N(7) = (151_41 _'(_2)-1 _ exp(z/278)-i _ (_4)-I_ exp(z/2v@).._lJ (241

#0 2 0

From expressions 14 and 19 we also see that both fm and f2 tend

to z log (az) for z larg_ _-here a = 2e -il/e. In fact for

z _ z' = 7-"_ x lO 4 this approximation is good to within one part in

104 . We may, therefore, perform the integrations indicate& in E

expression 24 in two parts; from zero to z' we evaluate the inte-

gra.1.._ nuraerica.l_ and from z' to _ we use z log (az) for fl and f2 _-

and obtain analytic expressions. !.

Carrying out this procedure we obtain the following, rather un-

transparent expression where F = 28%,

Z w

I (z)N(,) = (60/_')_',_F'" < ex=ptz/F). _ numerical
o

i

1965010115-022
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- 1''-_ z' :]..o_(_') log (1-eZ/r)

+ rTM (log(_')+ I)ni_(-z/r)

+ -_.iC-nz 'IF) I

n-._ n 2

rz '

_-,_/_.[r-_(jz,,_Cz)_",
0 exp (z/F) -i Jnumerical

- r_ z'2log(_.')log(l-ex_(-z'/r))

+ r -2z'(2log(az')+ l)m2 (_ (-z'/r))

+ r -_(_log(az')+ 3)_i3(ex_(-z'/r))

-' ]}+F 2
n3 • (2.5)

n--.1

Lis (z) is the trilogarithm where in general

z Lin_l(Z, )

Li (z) = S dz']3. z'o

-- V zm/mn Izl< 1L.,
m-=.l.

I II
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and El(z) is the exponential integral defined by

_'_ -t
- Ei(z) = ! e dt .

The values of this expression m_rbe calculated quite easily on :

a computer; however, it is instructive to consider the situation

when 7 (hence F) become.s very large. A brief examination shows

that every term in the expression tends toware_ zero with the

exception of the first series _- -Ei(-nz'/F)> From the known
!_ n2 •

properties of Ei(-x) we have

Ei(-x) = C + log (x) + f(x)

where C = 0.57721_669 is Euler's constant and f(o) = o and

If(x)l_ Ic+ log(x)!asx _ =.

f(_)
Therefore _ converges uniformly for all finite x and

;. n2

converges to zero for x equal to _ero. We are then left with

Z !

m

n n 11=

= C (e) log + const.
1'

!

h

I
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We then have

N(V) -" (15/_8 a) (C(2) log V + const.) (26)

as %,becomes very large.

1965010115-025
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IF I_._T.IL_'_AND CONCLUSION

In figure e we present curves of N(y) = - <d_/dt$(_ro20) -I

as a function of 7 =_/mee2 for a range of T from 5,O00°K to

lO,O00°K. The necessary computation w_s done on an IBM 7094.

For values of 2V@ < 10-2 the asymptotic series 20 was used in-

cluding the seventh order term. For values of 2V8 > 10TM e/_-

pression 25 was evaluated.

It is immediately seen that the approximation - (d_/dt> =_2

is very good for 4 < v < 4,000. Below 4 the dependence on p2

rather than_ 2 is manifest. Bet_'eenabout l0s and !Os the curves

achieve the form of expression 26 namely proportional to log_

and T TM. The values of :l(y)for _ - i can not be shown in figure

2 due to the logarithmic scale, however, the zeroth and first order

terms of expression 20 give quite accurate values in the region

_I.

It is of interest to compare inverse Compton scattering

and synchrotron radiation as an energy loss mechanicsm for cc_mic

ray electrons. To this end we first note that for small values

of _ 0 the inverse Compton scattering process is a classical radia-
:

tion process; in this limit the Klein-Nishina cross section is just

the Thompson scattering cross section.

For an electron in arbitrary electromagnetic field the instan-

taneous radiated power is given by 15

t

1965010115-027
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2 e4 ]..E,,+ _,, x H) 2 - (B • E_,,)2P
3 m2 c3 _ I - B2

e 4

2 (_ x _)2 + (?.xA)2 _ 2A. (Ex& 4

3 m2 03 L2 1 - B2 (27)

If we now assume that azy energy flow is isotropic ( (_ . (E_x _HH),%A--O)

and that the fields aze unpolarized (((8_X E)2A>V= _2 82 E2;

((8,_.x ._)2).,= _282 _2) . we now have

If we consider the _ituation that the only E fields present are ,i

radiation fields the radiation energy flux incident on the electron

is just 8_ uro2 (cE2/4_) so that the loss of mechanical energy is3

just radiation out minus radiation in or

E2 +H2 2

- (di_/dt>Av = 3..5.55 --. rr ro2 c ( 811 J( ?-'_• , me (29) :

where the energy density includes radiation and static magnetic fields.

This is, of course id.enticalto equation 21 and we see that the

relative importance of inverse Compton scattering compared to synchro-

tron radiation depends only on the energy density of the radiation

field versus the energy density of the magnetic fields16. We see,

therefore, that in the galaxy where the energy density of both starJight

and magnetic fields is of the order of 1 ev/cc the two processes will be

on a roughly equal,footing.

1965010115-028



APPENDIX

GENERATION OF AN ASYMPTOTIC EXPANSION BY REPEATED PARTIAL

INTEG YTIONS

Consider the integral

,_ fCz}
_. I = ] exp(z/£)-l

o

_ere f(z) is analytic on the positive real line including zero

and it and all of its derivatives increase no faster than a poly-

nomial as z - _. We my expand [exp (z/e) -i] aSn=_e -nz/¢ which

series converges uniformly in z for z >.o. Since the series does

not converge for z = o we must also demand that f(z) go to zero

at least as fast as z for z - o. Since the integral now has con-

tributions only in the region of uniform convergence we may inte-

grate term by term. Integrating a particular term by parts N

times we obtain

N m+l

(_.)e -nz/_._z=_ f(m)<o)( _
0

m=o

_- f(N+_zle -nz/. dz
where _ = j

o (n/e)N+I

Due to the analyticity of f(z) on the positive real axis and the

1965010115-029
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r

limitation on its growth as z _ _ f _+l)(z) may be bounded by i_

BNZqIf(N+l)(z)l < AN + so that

N+2 +q

$

If we now sum over n remembering that f(o) = o we have !
e

N

I= z Sm+R' _-N
m=l

i
where S = _ (m+l) f(m)(o) cm+lm

N+2 N+2+q
and IR'NI < AN C(N+2) ¢ + BN £ (q+l) C (N+2+q) ¢

This expansion: therefore, satisfies the definition17 of an

asy_totic exp&n.sion of I as ¢ .-, o.

II II
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. TABLEI

ExpansionCoefficientsfor fl andf2

I

n An Bn
I ,, •

0 0.0 0.0

1 0.0 0.0

2 0.0 O.13333320x 101

3 O.88888827xI00 -0.28444412xI01

4 -0.27999992x101 O.69999923x 101

5 O.78400015x I01 -0. 16784715x 102

6 -0.20520631x102 O.39161810x102

7 O.51156461x 102 --0.89469178x 102

8 -0.12304761x 103 O.20112988x 103

9 O.28815807x103 -0. 4464.5477x 103

I -0.66115232x103 O.98096851x10310
I
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Figure Captions

Figure i. AzJElesinvolved in the scattering process viewed from the

electron center-of-mass system.

F'gure 2. N(7) versas _ for values of @ corresponding to T = 5,C00°K,

7,or;_°K,ariai0,O00°K.
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